Polyhedral Groups and Pencils of K3-Surfaces with Maximal Picard Number
نویسنده
چکیده
A K3-surface is a (smooth) surface which is simply connected and has trivial canonical bundle. In these notes we investigate three particular pencils of K3-surfaces with maximal Picard number. More precisely the general member in each pencil has Picard number 19 and each pencil contains four surfaces with Picard number 20. These surfaces are obtained as the minimal resolution of quotients X/G, where G ⊂ SO(4, IR) is some finite subgroup and X ⊂ IP3(C) denotes a G-invariant surface. The singularities of X/G come from fix points of G on X or from singularities of X. In any case the singularities on X/G are A − D − E surface singularities. The rational curves which resolve them and some extra 2-divisible sets, resp. 3-divisible sets of rational curves generate the Neron-Severi group of the minimal resolution.
منابع مشابه
Group Actions, Cyclic Coverings and Families of K3-surfaces
In this paper we describe six pencils of K3-surfaces which have large Picardnumber (15 ≤ ρ ≤ 20) and contain precisely five singular fibers: four have A-D-E singularities and one is non-reduced. In particular we describe these surfaces as cyclic coverings of the K3-surfaces of [BS]. In many cases using this description and latticetheory we are able to compute the exact Picard-number and to desc...
متن کاملar X iv : 0 90 1 . 03 69 v 3 [ m at h . A G ] 3 S ep 2 00 9 ON COX RINGS OF K 3 - SURFACES
We study Cox rings of K3-surfaces. A first result is that a K3surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3-surfaces of Picard number two, and explicitly compute the Cox rings of generic K3-surfaces with a non-symplectic involution that have Picard number 2 to 5...
متن کاملTranscendental Lattices of Some K3-surfaces
In a previous paper, [S2], we described six families of K3-surfaces with Picardnumber 19, and we identified surfaces with Picard-number 20. In these notes we classify some of the surfaces by computing their transcendental lattices. Moreover we show that the surfaces with Picard-number 19 are birational to a Kummer surface which is the quotient of a non-product type abelian surface by an involut...
متن کاملEffective Computation of Picard Groups and Brauer-manin Obstructions of Degree Two K3 Surfaces over Number Fields
Using the Kuga-Satake correspondence we provide an effective algorithm for the computation of the Picard and Brauer groups of K3 surfaces of degree 2 over number fields.
متن کاملCox rings of K3 surfaces with Picard number two
We study presentations of Cox rings of K3 surfaces of Picard number two. In particular we consider the Cox rings of classical examples of K3 surfaces, such as quartic surfaces containing a line and doubly elliptic K3 surfaces.
متن کامل